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SYMMETRIC LINEAR MULTISTEP METHODS FOR SECOND-ORDER
DIFFERENTIAL EQUATIONS WITH PERIODIC SOLUTIONS *
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Special symmetric linear multistep methods for second-order differential equations without first derivatives
are proposed. The methods can be tuned to a possibly a priori knowledge of the user on the location of the
frequencies, that are dominant in the exact solution. On the basis of such extra information the truncation error
can considerably be reduced in magnitude. Numerical results are compared with results produced by the
symmetric methods of Lambert and Watson and the method of Gautschi.
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1. INTRODUCTION
In this paper we consider linear k-step methods

Iéoal)’n+l—l = h2l§)b1f(tn+1—1,)’n+1—1), k=2, n=k—1 (1.1)
for integrating the initial value problem for the special second-order equation:

J@) = fey@), y(o) = yo. y(to) = yo (1.2)
This linear multistep (LM) method is characterized by the polynomials

p(s“)::[éloaz & 0(§)1=§0bz ¢l (1.3)

Henceforth, we shall refer to (1.1) as the method {p,0}.
The leading assumption of this paper is that it is a priori known that the solution is approximately
of the form

yO=Cy + S Ce™! (1.4)
j=1
with frequencies «; in a given interval [, ®].
The special case where w; = jwy, with wy given, was considered by GauTtscHI [1]. His approach is
essentially the following :
Let
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#(z):=p(e”) — z%o(e?), (1.5)
then the local truncation error of (1.1) is given by [6]
Toos = o0 (6). (16)

Inserting (1.4) in (1.6) yields

T, 2o0)Co + 3 Cidlihw)e’™’, @ = juo. (1.7
j=1
The coefficients in the polynomials p and o are chosen in such a way that

®ihjwg) = 0, j =0,1,..q (1.8a)

for the largest possible value of ¢. Such methods are said to be of trigonometric order q (see also [8]).
An alternative approach replaces the fitting conditions (1.8a) by the conditions

#0) =0, @iha) =0, j = 1,2,...,q, (1.8b)

where the &) are appropriately chosen points in the interval [w,w]. For first-order differential equa-
tions this approach was analyzed in [4]. Following a similar analysis, we will try to minimize the func-
tion |¢(ihw)| in the interval [w,&] by a judicious choice of its zeros ihw) (see Section 2.2).

An advantage of the second approach (minimax-approach) over the Gautschi-approach is the
increased accuracy in cases where no accurate estimate of wy is available or when the frequency is
varying in time. In order to facilitate the use of these methods we also implemented a simple mechan-
ism to estimate the frequency during the integration process. These aspects will be demonstrated by
numerical experiments in Section 3.

In Section 2 we derive Gautschi- and minimax methods of optimal (algebraic) order of accuracy. As
an example, for k =4 closed form expressions for the coefficients ¢, and b, of the polynomials p and o
are presented.

2. SYMMETRIC METHODS

A linear k-step method is called optimal if it is zero-stable and if its order equals k& +2 [6]. It is well-
nown [3] that optimal methods necessarily

i) are implicit,

(i)  have an even step number &,

(iii)  have a symmetric o-polynomial, i.e. o(¢) = {Fo(¢™!)

(iv)  and have a p-polynomial the roots of which are 1 in modulus.

For second-order ODEs of the form (1.2) the last property implies that p is symmetric so that from
now on we will restrict our attention to symmetric, implicit LM methods {p,0} with even step number k
(and consequently even order p). In passing we note that the implication p is symmetric does not
apply in case of first-order ODEs.

In his original paper, Gautschi considered Stormer-Cowell type methods, i.e.
P8 — 2871 + %2 a5 h—0 which are clearly not symmetric for k=3 and consequently have
not the optimal (algebraic) order. Here, we propose LM methods based on the Gautschi-approach as
well as on the minimax-approach which do have the optimal order.

Our starting point is to choose a symmetric p-polynomial, which merely serves to let the method
{p,0} be zero-stable. We require this polynomial to satisfy ag = 1 and p(1) = p’(1) = 0; hence it
takes the form

(k-2)/2 . .
p) = -1y II—II ¢—e®yt—e ), 0<g<2m (2.1)

I-'ler.e,. the §; are in principle free parameters; however, the condition of zero-stability restricts the mul-
tiplicity of 6, to 2 if 6,547 and to 1 if §, = #. These free parameters can be used, for example, to
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decrease the error constant or to increase the interval of periodicity ([7]; see also Section 3, second
example).

The o-polynomial of a symmetric, implicit (even) k-step method has %—k +1 free b-coefficients. To

achieve order p = k + 2, we have to satisfy k + 4 conditions two of which are alreadylfulﬁlled by
the assumption p(1) = p’(1) = 0. Because of the symmetry of the method there remain >k +1 con-

ditions to be met, equal to the number of free parameters. In constructing LM methods based on the
Gautschi-approach (as well as on the minimax-approach) we follow the same strategy but now the b-
coefficients are determined by the fitting conditions (1.8a) (and (1.8b)). Because p(1) = 0 implies
#0) = 0, the number ¢ in (1.8) can be chosen equal to the number of free b-coefficients, i.e.
qg=5k+1L

The methods constructed in this way, converge for A—0 to the classical optimal method of order
2q(=k +2). This is probably best understood using the following heuristic explanation: a classical
optimal k-step LM method can be considered as a method which is (k +4) times fitted at the origin,
or equivalently, ¢(z) has a zero of multiplicity ¥ + 4 at z = 0. On the other hand, the optimal
Gautschi method has a ¢- function with a double zero at z = 0 (p(1) = p’(1) = 0) and ¢ = Sk +1

zeros at z = ihjwy. However, because ¢(iv)=0 implies ¢( —ir) = 0 the ¢- functions of both types of
methods have the same number of zeros. Finally, because the fitting points monotonically tend to zero
for h—0, the fitting points will collapse in the limit, resulting in the same algebraic order. A similar
argument holds for the minimax methods.

We remark that the procedure described above is equally valid in case of explicit LM methods. If
again symmetric methods are used, now a k-step method yields order k.

We conclude this section with a discussion of the solution of the linear system resulting from the
fitting conditions (1.8a) and the minimax conditions (1.8b).

2.1. Symmetric Gautschi methods
Due to the symmetry of the method, ¢(z) can be written as

k Ly K
o) = 5 S(a—bz)ek " +el) = ¢” z(a,—b,zz)cosh((!g- —1)z). 22)
1=0 1=0
The fitting conditions (1.8a) assume the form
k k .
Z(al-}-b,(jhwo)z)cos((-z— —1)jhw) =0, j = 1,..q, (2.3)
=0

or, equivalently,
k

=1

2 k k . .
GhaoR | S 2b,cos((§ —D)jhn)+by jat = = Sarcos((5 ~Djhen), j=1enng 2.4)
=0 1=0

It should be noted that only real-valued equations occur in this system. One possible way to solve
this system is, of course, a numerical approach. However, if huwy is extremely small, this system is very
badly conditioned and we will run into numerical difficulties. Therefore, it is convenient to have
available closed form expressions for the solution of this system. To give an example, we derived fqr
k = 4 such expressions using REDUCE, a package used for performing symbolic as well as numeri-
cal mathematical manipulation [2]. The results are:

_ (x—=1) 2x(16x>+38x% +24x +3) +a(5x +4)
363 x(x +1)2x +1)(dx2+2x —1)

boz
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p = —x=1) 2x(20x* +60x> +40x% — 3) — (18x> + 14x% —3x —2)
| ) )

Wi X (2x +1)(4x2+2x — 1)
by = (x —1) 2x(40x° +12x* —56x3 —20x2 +6x —3)+a(108x* + 170x> +42x> —25x —4)
27183 x(x +D)(@x2+2x —1) ’

where x : = cos»y and »y : = wyh, and where « is the free parameter occurring in the p-polynomial
p() = E= 1D —ag+1). 2.5)

Evidently, zero-stability requires —2<a<<2.

2.2 Symmetric minimax methods
Proceeding as in the previous section, the system defining the minimax methods reads (cf. (1.8b) and

2.4)

k

=< -

v |2 k : d k N
(hw)? 2b,cos((? —Dhe) + by )b =—g cos((E = hhaV), j=1,..q, (2.6)
=0 1=0

where the iwh are zeros of the function ¢(ihw) such that it has a small maximum norm in the inter-
val <w<w. First, we observe that ¢(ihw) = exp (ikhw /2) YWihw) with Y(ihw) real-valued. If Y(ihw)
would be a polynomial in w, then the optimal choice would be a shifted Chebyshev polynomial (cf.
[4]). This suggests to approximate ¥ by such a Chebyshev polynomial and to identify the vV with the
zeros of this polynomial. Since Y(ihw) is an even function of w we write (cf. (2.2))

ikhw khw 2 2_—=2_ 2
Hihe) = e ? Wiho)yme 2 CT (724
— 2
® —w
where C is some constant. Thus
. s
W = [5G ) + 3@~ = g @7

3. NUMERICAL ILLUSTRATION
In this section the optimal Gautschi methods and the optimal minimax methods are tested for k =4
(resulting in (algebraic) order 6). They will be compared mutually and also with the 6th-order, 4-step
(implicit) method of LAMBERT AND WATSON [7], which is also intended to integrate efficiently periodic
initial value problems. Actually, this method is the conventional optimal 4-step method. Similar to
the ‘fitted’ methods, it has one free parameter « (cf. 2.5). In all methods this parameter « is chosen
equal to zero.

Additionally, we list the results of the original 4-step Gautschi method of trigonometric order 3 (cf.
[1, p. 393]). This method has only algebraic order 5 because it lacks symmetry.

3.1 Implementational details

It will be clear that a proper application of the Gautschi- and minimax methods requires a more or
less accurate estimate of the frequency wy and the frequency-interval [w, ], respectively. If these esti-
mates are not available in advance, and also in cases where the frequency is varying in time, it will be
convenient to have a mechanism to estimate the frequency automatically. Therefore, we implemented
such a mechanism based on the following strategy: Suppose that the (local) solution on [t,-1,Z,] can
sufficiently accurate be approximated by

yO)=Co + Cre | ret, 1) (ERY)
Then, requiring y(1;) = y; and y”(4;) =f; , i = n—1, n, we obtain
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) = LS (.2)

In T Vn—1 .
Now, we use a ‘fitting’ method to perform the step from ¢, to 1, if the following conditions hold
true:

(1)
(@(P>E/h)P, €=002 , j=n n—1, n—2 (3.3a)

Only three w-values are involved because we focused on four-step methods. Evidently, (w())*
should be positive to obtain a real value for the frequency; the reason to impose the more restric-
tive condition (i) is motivated by the fact that the ‘fitted’ methods converge to the Lambert-
Watson method for ~—0 and do not show a substantial gain for very small values of Aw(y).
Moreover, the (numerical) solution of (1.8) gives numerical difficulties for Aw(j)<<1

(1)
max(w(f))<l2min(w(j)), j =n n—1, n—2. (3.3b)
J J

The expression for the local truncation error T, 1, (cf. Section 1) is based on constant w-values
in the ‘domain of influence’ of the LM method, i.e. [7,-3,%,+1]. To avoid a rigorous violation of
this assumption, condition (ii) is applied.

If () and (i) are satisfied we use wy = @, @w:=(w(n —2) +w(n —1)+w(n)) /3 in case of the
Gautschi-approach and [w,w] = [.95w,1.05w] in case of the minimax-approach. If (one of) these con-
ditions are not satisfied we use the Lambert-Watson method to integrate this particular step from z,
to t,+1. In our experiments, the above strategy is applied every step. Finally, in the numerical tests
the implicit relations were solved iteratively by Newton’s method with the stopping criterion: residue
less than 1072, To measure the obtained accuracy we define

cd(Y(t)) := —logip(l, norm of the error of Y(t) at t = tend). (3.4)
This quantity represents the number of correct digits of (7).

3.2 Test examples
Bessel’s equation
First, we consider the frequently used test problem, originally discussed by GAuTsCHI [1]

y(t)+(100+4—:5—)y(t) =0, 1<t<I0, (3.5)

with the initial conditions according to the ‘almost periodic’ particular solution
y(@) = ViJo(100), (3.6)

where J is the Bessel function of the first kind. Obviously, the frequency of y(¢) is approximately 10
and consequently the Gautschi methods were applied using «; = 10. For the minimax-approach we
used the frequency interval [w,w] = [9.5,10.5]. Additionally, we applied these methods using the
technique for automatically estimating the frequency. Table 3.1 shows the results for several step
sizes. Compared with the symmetric methods, the original Gautschi method is by far inferior. This is
not only due to its lower algebraic order but also a consequence of the fact that the coefficients are
given in series form which is not accurate enough unless hwy<<<1. Moreover, this table clearly shows
that it may pay to adapt the method to the knowledge available on the solution: for the versions in
which the fitting points are fixed beforehand, the optimal Gautschi method has a global error which is
approximately 100 times smaller than the error of the Lambert-Watson method, whereas the minimax
method has a further increase in accuracy of about three decimal digits. Furthermore, we see that the
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TABLE 3.1 cd(y (¢))-values at tend =10 for problem (3.5), (3.6)

method k/p/q frequency h=1/10 h=1/25 h=1/50
Lambert-Watson 4/6/- - 1.5 4.1 6.0
optimal Gautschi 4/6/3 10 3.5 6.4 8.2
optimal Gautschi 4/6/3 automatic 33 7.2 79
optimal minimax 4/6/3 [9.5,10.5] 6.4 9.1 11.0
optimal minimax 4/6/3 automatic 72 9.0 11.0
original Gautschi 4/5/3 10 0.4 3.1 49

automatic versions yield results which are approximately equal to the results obtained with a fixed fre-
quency (interval). We mention that — in these tests — it did not occur that the algorithm changed to
the Lambert-Watson method. The original Gautschi method gives the same results for both versions
because its poor performance is not caused by an inaccurate estimate of the frequency.

Orbit equation
The next example was studied by STIEFEL & BETTIS [9]:

Z(t) + z(t) = .001e", z(0) =1, z(0) = .9995i, zeC, 0<r<40m. 3.7
Writing z(r) = u(t)+iv(t), u,v €R, the solution is given by
u(t) = cost + .0005¢sins, v(z) = sint — .0005¢cost. (3.8)

The results of the various methods, when applied to the equivalent real-valued system for u and v, are
given in Table 3.2. As the solution possesses a frequency

TABLE 3.2. cd(z (¢))-values at tend = 40 for problem (3.7),(3.8)

method k/p/q frequency h=m/4 h=m/6 h=m/9 h=mw/12
Lambert-Watson 4/6/- - 1.5 2.6 3.7 45
optimal Gautschi 4/6/3 1 3.0 4.2 5.3 6.1
optimal Gautschi 4/6/3 automatic 4.4 5.5 6.5 7.3
optimal minimax 4/6/3 [0.9,1.1] 5.0 6.1 7.2 8.0
optimal minimax 4/6/3 automatic 6.2 7.4 8.5 92
original Gautschi 4/5/3 1 02 1.4 2.6 34

close to 1, we applied the Gautschi-type methods using wy =1 and the minimax method was given
the frequency interval [0.9,1.1]. Again, both types of methods were also tested using the ‘frequency-

estimator’. The solution z(¢) represents a slightly perturbed circular orbit in the complex plane. Its
distance to the origin is given by

v = WO+ = [1+(-0005t)2]%, (3.9)

hence z(r) spirals slowly outwards. Many numerical methods yield approximations which spiral
inwards for all values of 4; these methods were termed ‘orbitally unstable’ by Stiefel and Bettis. (This
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is because the principle roots of the characteristic equation are inside the unit circle for any small A;
for a detailed discussion on these aspects we refer to [7].) Lambert and Watson constructed LM
methods possessing a periodicity property as long as the product of & and the frequency « remains
within a certain interval and called this the interval of periodicity. To give an example, the Lambert-
Watson method we are testing in this section has an interval of periodicity (0,60/11). Therefore, the
accuracy of y is probably more interesting than the accuracy of z. We found for all methods and for
all step sizes used a numerical value of y larger than 1, which is, at least qualitatively, in accordance
with its theoretical behaviour. The cd-values can be found in Table 3.3.

TABLE 3.3. cd (y())-values at tend =40 for problem (3.7)-(3.9)

method k/p/q frequency h=w/4 h=m/6 h=x/9 h=x/12
Lambert-Watson 4/6/- - 3.0 4.1 5.2 6.0
optimal Gautschi 4/6/3 1 42 5.4 6.5 7.3
optimal Gautschi 4/6/3 automatic 4.4 5.6 6.6 7.3
optimal minimax 4/6/3 [0.9,1.1] 6.4 7.6 8.7 9.4
optimal minimax 4/6/3 automatic 7.5 8.7 9.7 10.5
original Gautschi 4/5/3 1 0.2 1.5 27 3.6

The results of both tables give rise to conclusions similar to those of the first example. Again, the
estimates of the frequency were accepted in all steps and the results obtained are even better than in
the case where we used a fixed frequency.

Nonlinear equation
Our third problem is taken from JAIN, KAMBO and GOEL [5] and reads

Z@)+(1+a +abe )z (t)—ae ""z%(t) = 0, 0<t<20m, (3.10)
z(0) = 1+b, 2(0) =i(1—b), zeC.

The theoretical solution, with z(t) = u(t) + iv(¢) , is given by
u(t) = (1+b)cost , v(¢) = (1—b)sint. (3.11)

Following Jain et al. we selected the parameter values a =0.1 and b=0.1. The Gautschi- and
minimax methods were applied in both versions; in the non-automatic version we employed wo=1
and [w,®] = [0.9,1.1], respectively. As the solution (3.11) possesses only one, constant frequency
w=1, the Gautschi method, using wy=1, integrated exactly, whereas the automatic version gives
results which are nearly exact (relative to the machine-precision). The minimax method did not
exactly fit the frequency w =1 (cf. (2.7)) but could obtain a substantial gain in accuracy when com-
pared with the Lambert-Watson method. Table 3.4 gives the results for several step lengths.

Mathieu’s equation .
The last test example is a Mathieu equation, also possessing a periodic solution:

y()+(a—2gqcos 2y @) = 0, 0<:<20, y(0) =1, y(0) = 0. (3.12)
We do not have available an exact solution; however, it is known that the solution is of the form
y () = eMP@), (3.13)

where P (r) is periodic with frequency 2 and A is the ‘characteristic exponent” which depends on a and
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TABLE 3.4. ¢cd(z (t))-values at tend = 207 for problem (3.10), (3.11)

method k/p/q frequency h=m/6 h=m/12 h=m/24
Lambert-Watson 4/6/- - 3.1 5.0 6.8
optimal Gautschi 4/6/3 1 exact exact exact
optimal Gautschi 4/6/3 automatic 11.5 11.1 11.0
optimal minimax 4/6/3 [0.9,1.1] 6.6 8.5 10.2
optimal minimax 4/6/3 automatic 7.9 9.7 10.9
original Gautschi 4/5/3 1 20 3.9 5.7

g. By choosing a =3.7 and ¢ =2.0 we achieve that A=~2. Hence, we tested the Gautschi method with
wp = 2 and the minimax-approach used the frequency interval [1.9,2.1]. Both methods performed
only slightly better than the Lambert-Watson method. This is explained as follows: in spite of the
periodicity of the function P(z), the solution y(¢) is not of the form (1.4), at least not with a small
value of m. This became clear in using the automatic version: in the greater part of the time steps the
estimator could not find positive values for w(n) (see also the conditions (3.3)) and even if such
values were found in three subsequent time steps they varied too rapidly to be useful.

TABLE 3.5. cd(y(¢))-values at tend =20 for example (3.12)

method k/p/q frequency h=1/10 h=1/20 h=1/40
Lambert-Watson 4/6/- - 3.6 54 7.2
optimal Gautschi 4/6/3 2 4.6 6.4 8.3
optimal Gautschi 4/6/3 automatic 3.7 5.0 5.8
optimal minimax 4/6/3 [1.9,2.1] 4.0 5.8 7.5
optimal minimax 4/6/3 automatic 3.7 5.5 7.1
original Gautschi 4/5/3 2 238 43 59

Therefore, apart from its use in estimating the unknown frequency of the (local) solution, this exam-
ple clearly shows, that this frequency-estimation technique is at the same time useful to detect whether
or not y(r) is of the required form (1.4). If this premiss on y(r) is not fulfilled the fitting- and
minimax methods are not feasible and a conventional method should be used. The results of all
methods are collected in Table 3.5. The reference solution at tend =20 as well as the starting values
for the 4-step methods were calculated with an automatic Runge-Kutta code from the NAG-library
using a very small tolerance parameter to control the local error.
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